Chapter 3
Words and Transducers

Morphological
parsing
FParsing

Surface form

How can there be any sin in sincere?
Where is the good in goodbye?
Meredith Willson, The Music Man

Chapter 2 introduced the regular expression, showing, for example, how a single search
string could help us find both woodchuck and woodchucks. Hunting for singular or
plural woodchucks was easy; the plural just tacks an s on to the end. But suppose we
were looking for another fascinating woodland creatures; let’s say a fox, a fish, that
surly peccary, and perhaps a Canadian wild goose. Hunting for the plurals of these
animals takes more than just tacking on an 5. The plural of fox is foxes; of peccary,
peccaries; and of geose, geese. To confuse matters further, fish don’t usually change
their form when they are plural.'

It takes two kinds of knowledge to correctly search for singulars and plurals of
these forms. Orthographic rules tell us that we pluralize English words ending in -y
by changing the -y to -i- and adding an -es. Morphological rules tell us that fish has a
null plural and that the plural of goose is formed by a vowel change.

The problem of recognizing that a word (like foxes) breaks down into component
morphemes (fox and -es) and building a structured representation of this fact is called
morphological parsing.

Parsing means taking an input and producing some sort of linguistic structure for
it. We use the term parsing very broadly throughout this book to include many kinds
of structures that might be produced; morphological, syntactic, semantic, discourse; in
the form of a string, a tree, or a network. Morphological parsing or stemming applies to
many affixes other than plurals; for example, we might need to take any English verb
form ending in -ing (going, talking, congramlating) and parse it into its verbal stem
plus the -ing morpheme. So given the surface or input form going, we might want to
produce the parsed form VERBE-go + GERUND-ing.

Morphological parsing is important throughout speech and language processing. It
plays a crucial role in Web search for morphologically complex languages like Russian
or German; in Russian the word Moscow has different endings in the phrases Moscow,
of Moscow, from Moscow, and so on. We want to be able to automatically search for the
inflected forms of the word even if the user only typed in the base form. Morphologi-
cal parsing also plays a crucial role in part-of-speech tagging for these morphologically
complex languages, as we show in Chapter 5. Tt is important for producing the large
dictionaries that are necessary for robust spell-checking. We need it in machine trans-
lation to realize, for example, that the French words va and aller should both translate
to forms of the English verb go.

To solve the morphological parsing problem, why couldn't we just store all the
plural forms of English nouns and -ing forms of English verbs in a dictionary and do
parsing by lookup? Sometimes we can do this, and, for example, for English speech

I See, for example, Seuss (1960).

45

Chapter 3.

Words and Transducers

Productive

Stemming

recognition this is exactly what we do. But for many NLP applications this isn’t pos-
sible because -ing is a productive suffix; by this we mean that it applies to every verb.
Similarly -s applies to almost every noun. Productive suffixes even apply to new words;
thus, the new word fax can automatically be used in the -ing form: faxing. Since new
words (particularly acronyms and proper nouns) are created every day, the class of
nouns in English increases constantly and we need to be able to add the plural mor-
pheme -5 to each of these. Additionally, the plural form of these new nouns depends
on the spelling/pronunciation of the singular form, for example, if the noun ends in -z,
then the plural form is -es rather than -s. We'll need to encode these rules somewhere.
Finally, we certainly cannot list all the morphological variants of every word in
morphologically complex languages like Turkish, which has words like these:

(3.1} uygarlastiramadiklanmizdanmissimzcasimna

wygar Hlag +hr ‘ama +dik +lar iz +dan ey +song Feasing
civilized +BEC +CAUS +NABL +PART +PL +P1PL +ABL +PAST +2PL +AsIf

“{behaving) as if you are among those whom we could not civilize™
The various pieces of this word (the morphemes) have these meanings:

+BEC “become”

+CAUS the causative verb marker (‘cause to X)

+NABL “not able”

+FART pasi participle form

+PlPL 1st person pl possessive agreement

+2PL 2nd person pl

+ABL ablative {from/among) case marker

+Aslf derivationally forms an adverb from a finite verb

Not all Turkish words look like this; the average Turkish word has about three mor-
phemes. But such long words do exist; indeed, Kemal Oflazer, who came up with this
example, notes (p.c.) that verbs in Turkish have 40,000 possible forms, not counting
derivational suffixes. Adding derivational suffixes, such as causatives, allows a theoret-
ically infinite number of words, since causativization can be repeated in a single word
{(You cause X to cause ¥ to . . .do W). Thus, we cannot store all possible Turkish words
in advance and must do morphological parsing dynamically.

In the next section, we survey morphological knowledge for English and some
other languages. We then introduce the key algorithm for morphological parsing, the
finite-state transducer. Finite-state transducers are a crucial technology throughout
speech and language processing, so we return to them again in later chapters.

After describing morphological parsing, we introduce some related algorithms in
this chapter. In some applications we don’t need to parse a word, but we do need 1o
map from the word to its root or stem. For example, in information retrieval (IR) and
web search, we might want to map from foxes to fox, but might not need to also know
that _fioxes is plural. Just stripping off such word endings is called stemming in IR. We
describe a simple stemming algorithm called the Porter stemmer.

For other speech and language processing tasks, we need to know that two words
have a similar root, despite their surface differences. For example, the words sang,
sung, and sings are all forms of the verb sing. The word sing is sometimes called

Section 3.1, Survey of (Mostly) English Morphology 47

Lemmatization

Tokenization

the common lemma of these words, and mapping from all of these to sing is called
lemmatization.”

Next, we introduce another task related to morphological parsing. Tokenization
or word segmentation is the task of separating out (tokenizing) words from running
text. In English, words are often separated from each other by blanks (whitespace), but
whitespace is not always sufficient; we’ll need to notice that New York and rock "n’ roll
are individual words despite the fact that they contain spaces, but for many applications
we'll need to separate ['m into the two words [and am.

Finally, for many applications we need to know how similar two words are or-
thographically. Morphological parsing is one method for computing this similarity;
another is to use the minimum edit distance algorithm to compare the letters in the
two words, We introduce this important NLP algorithm and also show how it can be
used in spelling correction.

3.1 Survey of (Mostly) English Morphology

Morpheme

St

Morphology is the study of the way words are built up from smaller meaning-bearing
units, morphemes. A morpheme is often defined as the minimal meaning-bearing unit
in a language. So, for example, the word fox consists of one morpheme (the morpheme
fox) and the word cats consists of two: the morpheme car and the morpheme -s.

As this example suggests, it is often useful to distinguish two broad classes of
morphemes: stems and affixes. The exact details of the distinction vary from language
to language, but intuitively, the stem is the “main” morpheme of the word, supplying
the main meaning, and the affixes add “additional” meanings of various kinds.

Affixes are further divided into prefixes, suffixes, infixes, and circumfixes, Pre-
fixes precede the stem, suffixes follow the stem, circumfixes do both, and infixes are
inserted inside the stem. For example, the word eats is composed of a stem ear and the
suffix -s. The word unbuckle is composed of a stem buckle and the prefix un-. English
doesn’t really have circumfixes, but many other languages do. In German, for exam-
ple, the past participle of some verbs is formed by adding ge- to the beginning of the
stem and - to the end; so the past participle of the verb sagen (to say) is gesagt (said).
Infixes, in which a morpheme is inserted in the middle of a word, occur commonly,
for example, in the Philipine language Tagalog. For example, the affix um, which
marks the agent of an action, is infixed to the Tagalog stem hingi “borrow™ to produce
humingi. There is one infix that occurs in some dialects of English in which the taboo
morphemes “f**king” or “bl**dy™ or others like them are inserted in the middle of
other words (“Man-f**king-hattan”, “abso-bl**dy-lutely”*) (McCawley, 1978).

A word can have more than one affix. For example, the word rewrites has the prefix
re-, the stem write, and the suffix -s. The word unbelievably has a stem (believe) plus
three affixes (un-, -able, and -ly). While English doesn’t tend to stack more than four

1 Lemmatization is actually more complex, since it sometimes involves deciding on which sense of a word
is present. We return to this issue in Chapter 20,

* Alan Jay Lemer, the lyricist of My Fair Lady, bowdlerized the latter to abso-bloemin "lutely in the lyric 1o
“Wouldn't It Be Loverly?” (Lerner, 1978, p. 60).

48

Chapter 3.

Words and Transducers

Inflection
Derivation
Compournding
Clisicization

Clitic

Plural

Singular

or five affixes, languages like Turkish can have words with nine or ten affixes, as we
saw above. Languages that tend to string affixes together as Turkish does are called
agglutinative languages.

There are many ways to combine morphemes to create words. Four of these meth-
ods are common and play important roles in speech and language processing: inflec-
tion, derivation, compounding, and cliticization.

Inflection is the combination of a word stem with a grammatical morpheme, usu-
ally resulting in a word of the same class as the original stem and usually filling some
syntactic function like agreement. For example, English has the inflectional morpheme
-5 for marking the plural on nouns and the inflectional morpheme -ed for marking the
past tense on verbs. Derivation is the combination of a word stem with a grammatical
morpheme, usually resulting in a word of a different class, often with a meaning hard
to predict exactly. For example, the verb computerize can take the derivational suf-
fix -ation to produce the noun computerization. Compounding is the combination of
multiple word stemns together. For example, the noun deghouse is the concatenation of
the morpheme dog with the morpheme house. Finally, cliticization is the combination
of a word stem with a clitic. A clitic is a morpheme that acts syntactically like a word
but is reduced in form and attached (phonologically and sometimes orthographically)
to another word. For example the English morpheme "ve in the word ['ve is a clitic, as
is the French definite article /" in the word ['opera. In the following sections we give
more details on these processes.

3.1.1 Inflectional Morphology

English has a relatively simple inflectional system; only nouns, verbs, and some adjec-
tives can be inflected, and the number of possible inflectional affixes is quite small.

English nouns have only two kinds of inflection: an affix that marks plural and an
affix that marks possessive. For example, many (but not all) English nouns can either
appear in the bare stem or singular form or take a plural suffix. Here are examples of
the regular plural suffix -5 (also spelled -es), and irregular plurals.

Regular Nouns Irregular Nouns
Singular cat thrush mouse ox
Plural cats thrushes mice oxen

While the regular plural is spelled -5 after most nouns, it is spelled -es after words
ending in -5 (ibis/ibises), -z (waltz/waltzes), -sh (thrushithrushes), -ch (finch/finches),
and sometimes -x (box/boxes). Nouns ending in -y preceded by a consonant change the
-y 1o i (butterfly/butterflies).

The possessive suffix is realized by apostrophe + -5 for regular singular nouns
(/lama’s) and plural nouns not ending in -5 (children’s) and often by a lone apostro-
phe after regular plural nouns (/lamas') and some names ending in -s or -z (Ewripides’
comedies).

English verbal inflection is more complicated than nominal inflection. First, En-
glish has three kinds of verbs; main verbs, (ear, sleep, impeach), modal verbs (can,
will, should), and primary verbs (be, have, do) (using the terms of Quirk et al., 1985).

Section 3.1. Survey of (Mostly) English Morphology 49

Regular verb

Trregular verb

Preterite

Progressive

In this chapter, we are mostly concerned with the main and primary verbs because these
have inflectional endings. Of these verbs a large class are regular, that is, all verbs of
this class have the same endings marking the same functions. These regular verbs (e.g.,
walk or inspect) have four morphological forms, as follows:

Morphological Class Regularly Inflected Verbs
stem walk merge iy map
-5 form walks merges tries maps
-ing participle walking merging trying mapping

Past form or -ed participle walked merged tried mapped

These verbs are called regular because just by knowing the stem we can predict
the other forms by adding one of three predictable endings and making some regular
spelling changes (and as we show in Chapter 7, regular pronunciation changes). These
regular verbs and forms are significant in the morphology of English: first, because they
cover a majority of the verbs; and second, because the regular class is productive. As
discussed earlier, a productive class is one that automatically includes any new words
that enter the language. For example, the recently created verb fax (My mom faxed me
the note from cousin Everert) takes the regular endings -ed, -ing, -es. (Note that the -5
form is spelled faxes rather than faxs; we will discuss spelling rules below).

The irregular verhs are those that have some more or less idiosyneratic forms of
inflection. Irregular verbs in English often have five different forms but can have as
many as eight (e.g., the verb be) or as few as three (e.g., cut or hir). While irregular
verbs constitute a much smaller class of verbs (Quirk et al. (1985) estimate there are
only about 250 irregular verbs, not counting auxiliaries), this class includes most of the
very frequent verbs of the language.* The table below shows some sample irregular
forms. Note that an irregular verb can inflect in the past form (also called the preterite)
by changing its vowel {eat/ate), its vowel and some consonants (carch/caught), or with
no change at all {cut/cur).

Morphological Class Irregularly Inflected Verbs

stem eat catch cut
s form eats catches cuts
-ing participle . eating catching cutting
preterite ate caught cut
past participle eaten caught cut

The way these forms are used in a sentence is discussed in the syntax and semantics
chapters but is worth a brief mention here. The -5 form is used in the “habitual present™
form to distinguish the third-person singular ending (She jogs every Tuesday) from the
other choices of person and number (llvou/we/they jog every Tuesday). The stem form
is used in the infinitive form and also after certain other verbs (I'd rather walk home,
I want to walk home). The -ing participle is used in the progressive construction to

4 In general, the more frequent a word form, the more likely it is to have idiosyncratic propertics; this is due
to a fact about language change: very frequent words tend to preserve their form even if other wonds around
them are changing so as to become more regular.,

50 Chapter 3. Words and Transducers
mark present or ongoing activity (It is raining) or when the verb is treated as a noun;
Gerund this latter kind of nominal use of a verb is called a gerund: Fishing is fine if vou live
Perfect near water. The -ed/-en participle is used in the perfect construction (He's eaten lunch

already) or the passive construction (The verdict was overturned yesterday).

In addition to noting which suffixes can be attached to which stems, we need to cap-
ture the fact that a number of regular spelling changes occur at these morpheme bound-
aries. For example, a single consonant letter is doubled before the -ing and -ed suffixes
(beg/begging/begged) is added. If the final letter is “c”, the doubling is spelled “ck”
(picnicipicnicking/picnicked). If the base ends in a silent -e, it is deleted before -ing
and -ed (merge/merging/merged) are added. Just as for nouns, the -s ending is spelled
-es after verb stems ending in -5 (foss/tosses), -7 (waltz'walizes), -sh (wash/washes)
-ch (catch/carches), and sometimes -x (tax/taxes). Also like nouns, verbs ending in -y
preceded by a consonant change the -y to -i (try/tries).

The English verbal system is much simpler than for example the European Spanish
system, which has as many as 50 distinct verb forms for each regular verb. Figure 3.1
shows just a few of the examples for the verb amar, “to love™. Other languages can
have even more forms than this Spanish example.

Present Imperfect Future Preterite Present Conditional Imperfect Future

Indicative Indicative Subjunctive Subjunctive Subjunctive
158G amo amaba amaré amé ame amaria arnara arnare
25G amas amabas amards amaste ames amarias amaras amares
385G ama amaba amard ama ame amaria amara amdreme
1PL amamos amdbamos amaremos amamos amemos amAriamos amiramos amiremos
2PL amdis amabais amaréis amasteis améis amariais amarais amareis
3PL aman amaban amarin amaron amen amarian amaran amaren

“Ta love™ in Spanish. Some of the inflected forms of the verb amar in European Spanish. 185G stands
for “first-person singular”, 3PL for “third-person plural”, and so on.

Nominalizarion

3.1.2 Derivational Ibf‘nrphology

While English inflection is relatively simple compared to other languages, derivation
in English is quite complex. Recall that derivation is the combination of a word stem
with a grammatical morpheme, usually resulting in a word of a different class, often
with a meaning hard o predict exactly.

A common kind of derivation in English is the formation of new nouns, often from
verbs or adjectives. This process is called nominalization. For example, the suffix
-ation produces nouns from verbs ending often in the suffix -ize (compurerize — com-
puterization). Here are examples of some productive English nominalizing suffixes.

Suffix Base Verb/Adjective Derived Noun

-ation computerize (V) computerization
-ee appoint (V) appointee

-er kill (V) killer

-ness fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Here are examples of a few
suffixes deriving adjectives from nouns or verbs.

Section 3.1. Survey of (Mostly) English Morphology 51

Proclitic
Encliric

Concatenative
morphology

Suffix Base Noun/Verb Derived Adjective

-al computation (N) computational
-able embrace (V) embraceable
-less clue (N) clueless

Derivation in English is more complex than inflection for a number of reasons.
One is that it is generally less productive; even a nominalizing suffix like -ation, which
can be added to almost any verb ending in -ize, cannot be added to absolutely every
verb. Thus, we can't say *eatation or *spellation (we use an asterisk (*) to mark
“non-examples” of English). Another is that there are subtle and complex meaning
differences among nominalizing suffixes. For example, sincerity has a subtle difference
in meaning from sincereness.

3.1.3 Cliticization

Recall that a clitic is a unit whose status lies between that of an affix and a word. The
phonological behavior of clitics is like affixes; they tend to be short and unaccented
{we talk more about phonology in Chapter 8). Their syntactic behavior is more like
words, often acting as pronouns, articles, conjunctions, or verbs. Clitics preceding a
word are called proclitics, and those following are enclitics.

English clitics include these auxiliary verbal forms:

Full Form Clitic Full Form Clitic
am ‘m have Ve
are e has 's
s s had 'd

A will gl would 'd

Note that the clitics in English are ambiguous; Thus she's can mean she is or she
has, Except for a few such ambiguities, however, correctly segmenting clitics in En-
glish is simplified by the presence of the apostrophe. Clitics can be harder to parse
in other languages. In Arabic and Hebrew, for example, the definite article (the; Al
in Arabic, ha in Hebrew) is cliticized on to the front of nouns. It must be segmented
in order to do part-of-speech tagging, parsing, or other tasks. Other Arabic proclitics
include prepositions like b ‘by/with’ and conjunctions like w *and’. Arabic also has
enclitics marking certain pronouns. For example, the word and by their virtues has
clitics meaning and, by, and their, a stem virtfue, and a plural affix. Note that since
Arabic is read right to left, these would actually appear ordered from right to left in an
Arabic word.

Proclitic Proclitic Stem Affix Enclitic
Arabic w b Hsn At hm
Gloss and by virtue s their

3.1.4 Non-Concatenative Morphology

The kind of morphology we have discussed so far, in which a word is composed of
a string of concatenated morphemes is often called concatenative morphology. A

52 Chapter 3.

Words and Transducers

Agreemens

Crender

Nown class

number of languages have extensive non-concatenative morphology, in which mor-
phemes are combined in more complex ways. The Tagalog infixation example above is
one example of non-concatenative morphology since two morphemes (hingi and wm)
are intermingled,

Another kind of non-concatenative morphology is called templatic morphology or
root-and-pattern morphology. This is common in Arabic, Hebrew, and other Semitic
languages. In Hebrew, for example, a verb (as well as other parts-of-speech) is con-
structed from two components: a root, consisting wsually of three consonants (CCC)
and carrying the basic meaning; and a template, which gives the ordering of conso-
nants and vowels and specifies more semantic information about the resulting verb,
such as the semantic voice (e.g., active, passive, middle). For example, the Hebrew
tri-consonantal root /md, meaning ‘learn’ or ‘study’, can be combined with the active
voice CaCaC template to produce the word lamad, ‘he studied’, or the intensive Ci-
CeC template to produce the word limed, ‘he taught’, or the intensive passive template
CuCaC to produce the word liwmad, *he was taught’. Arabic and Hebrew combine this
templatic morphology with concatenative morphology (like the cliticization example
shown in the previous section).

3.1.5 Agreement

We introduced the plural morpheme above and noted that plural is marked on both
nouns and verbs in English. We say that the subject noun and the main verb in English
have to agree in number, meaning that the two must either be both singular or both
plural. There are other kinds of agreement processes. For example, nouns, adjectives,
and sometimes verbs in many languages are marked for gender. A gender is a kind
of equivalence class that is used by the language to categorize the nouns; each noun
falls into one class. Many languages (e.g., Romance languages like French, Spanish,
or Italian) have 2 genders, which are referred to as masculine and feminine. Other
languages (like most Germanic and Slavic languages) have three (masculine, feminine,
neuter). Some languages, for example, the Bantu languages of Africa, have as many as
20 genders. When the number of classes is very large, we often refer to them as noun
classes instead of genders.

Gender is sometimes marked explicitly on a noun; for example, Spanish masculine
words often end in -o and feminine words in -a. But in many cases the gender is not
marked in the letters or phones of the noun itself. Instead, it is a property of the word
that must be stored in a lexicon. We see an example of this in Fig. 3.2.

3.2 Finite-State Morphological Parsing

Feature

Let’s now proceed to the problem of parsing morphology. Our goal is to take input
forms like those in the first and third columns of Fig. 3.2 and produce output forms like
those in the second and fourth column.

The second column contains the stem of each word as well as assorted morpho-
logical features. These features specify additional information about the stem. For

Section 3.2. Finite-State Morphological Parsing 53

Lexicon

Morphotactics

Orthographic
riles

English Spanish
Input Morphological Parse Input Morphological Parse Gloss
cats cat +N +PL pavos pavo +N +Masc +Pl “ducks’
cat cat +N +8G pava pavo +N +Mase +5g *duck”
cities city +N +FP1 bebo beber +V +Plnd +1P +5g ‘I drink’
geese goose +N +Pl canto cantar +V +PInd +1P +5g ‘I sing’
goose goose +N +5g canto canto +N +Masc +5g ‘song’
goose goose +V puse poner +V +Perf +1P +5g ‘I was able’
gooses goose +V +3P +5g vino venir +V +Perf 43P +5g ‘he/she came’
merging merge +V +PresPart vino vino +N +Masc +5g ‘wine’
caught catch +V +PastPart lugar lugar +N +Masc +5g ‘place’

caught catch +V +Past
(PO ®] Output of a morphological parse for some English and Spanish words. Spanish
output modified from the Xerox XRCE finite-state language tools.

example, the feature +N means that the word is a noun; +Sg means it is singular; +P1
that it is plural. Morphological features are referred to again in Chapter 5 and in more
detail in Chapter 15; for now, consider +Sg to be a primitive unit that means “singular”.
Spanish has some features that don’t occur in English; for example, the nouns lugar
and pave are marked +Masc (masculine). Because Spanish nouns agree in gender with
adjectives, knowing the gender of a noun will be important for tagging and parsing.

Note that some of the input forms (like caught, goose, canto, or vino) are am-
biguous between different morphological parses. For now, we will consider the goal
of morphological parsing merely to list all possible parses. We return to the task of
disambiguating among morphological parses in Chapter 5.

To build a morphological parser, we'll need at least the following:

1. Lexicon: the list of stems and affixes, together with basic information about
them (whether a stem is a noun stem or a verb stem, etc.).

2. Morphotactics: the model of morpheme ordering that explains which classes of
morphemes can follow other classes of morphemes inside a word. For example,
the fact that the English plural morpheme follows the noun rather than preceding
it is a morphotactic fact.

3. Orthographic rules: these spelling rules are used to model the changes that
occur in a word, usually when two morphemes combine (e.g., the vy — ie spelling
rule discussed above that changes city + -5 to cities rather than citys).

The next section discusses how to represent a simple version of the lexicon just for
the sub-problem of morphological recognition, including how to use FSAs to model
morphotactic knowledge.

In following sections we then introduce the finite-state transducer (FST) as a way of
modeling morphological features in the lexicon and addressing morphological parsing.
Finally, we show how to use FSTs to model orthographic rules,

54 Chapter 3, Words and Transducers

3.3 Construction of a Finite-State Lexicon

A lexicon is a repository for words. The simplest possible lexicon would consist of
an explicit list of every word of the language (every word, i.e., including abbreviations
(“AAA”) and proper names (“Jane™ or “Beijing™)) as follows:

a, AAA, AA, Aachen, aardvark, aardwolf, aba, abaca, aback, . ..

Since it will often be inconvenient or impossible, for the various reasons we dis-
cussed above, to list every word in the language, computational lexicons are usually
structured with a list of each of the stems and affixes of the language together with a
representation of the morphotactics that tells us how they can fit together. There are
many ways to model morphotactics; one of the most common is the finite-state au-
tomaton. A very simple finite-state model for English nominal inflection might look
like Fig. 3.3.

irreg-pl-noun

irreg-sg-noun
LLFHIERIR] A finite-state automaton for English nominal inflection.

The FSA in Fig. 3.3'assumes that the lexicon includes regular nouns (reg-noun)
that take the regular -5 plural (e.g., cat, dog, fox, aardvark). These are the vast majority
of English nouns since for now we will ignore the fact that the plural of words like fox
have an inserted e: foxes. The lexicon also includes irregular noun forms that don’t
take -5, both singular irreg-sg-noun (goose, mouse) and plural irreg-pl-noun (geese,
mice).

reg-noun irreg-pl-noun irreg-sg-noun plural

fox geese goose -5
cat sheep sheep
aardvark mice mouse

A similar model for English verbal inflection might look like Fig. 3.4.

This lexicon has three stem classes (reg-verb-stem, irreg-verb-stem, and irreg-
past-verb-form), plus four more affix classes (-ed past, -ed participle, -ing participle,
and third singular -s):

walk cut caught -ed -ed -ing -5
fry speak ate
talk sing eaten

impeach sang

Section 3.3. Construction of a Finite-State Lexicon 55

irreg-past-verb-form

ff_-m.__.‘
ireg-verb-stem l-@-"

U] A finite-state automaton for English verbal inflection.

English derivational morphology is significantly more complex than English inflec-
tional morphology, and so automata for modeling English derivation tend to be quite
complex. Some models of English derivation, in fact, are based on the more complex
context-free grammars of Chapter 12 (see also (Sproat, 1993)).

Consider a relatively simpler case of derivation: the morphotactics of English ad-
jectives, Here are some examples from Antworth (1990):

big, bigger, biggest, cool, cooler, coolest, coolly
happy, happier, happiest, happily red, redder, reddest
unhappy, unhappier, unhappiest, unhappily real, unreal, really

clear, clearer, clearest, clearly, unclear, unclearly

Aq initial hypothesis might be that adjectives can have an optional prefix (un-), an
obligatory root (big, cool, etc.), and an optional suffix (-er, -est, or -ly). This might
suggest the FSA in Fig. 3.5.

QTR An FSA for a fragment of English adjective morphology: Antworth’s Proposal #1.

Alas, while this FSA will recognize all the adjectives in the table above, it will also
recognize ungrammatical forms like unbig, unfast, oranger, or smally. We need to set
up classes of roots and specify their possible suffixes. Thus, adj-root; would include
adjectives that can occur with un- and -ly (clear, happy, and real), and adj-root; will
include adjectives that can’t (big, small), and 50 on.

This gives an idea of the complexity to be expected from English derivation. As a
further example, we give in Fig. 3.6 another fragment of an FSA for English nominal
and verbal derivational morphology, based on Sproat (1993), Bauer (1983), and Porter
(1980). This FSA models a number of derivational facts, such as the well-known gener-
alization that any verb ending in -ize can be followed by the nominalizing suffix -ation
(Bauer, 1983; Sproat, 1993). Thus, since there is a word fossilize, we can predict the
word fossilization by following states go, g1, and g2. Similarly, adjectives ending in
-al or -able at gs (equal, formal, realizable) can take the suffix -ity, or sometimes the
suffix -ness to state gg (naturalness, casualness). We leave it as an exercise for the

56 Chapter 3. Words and Transducers

reader (Exercise 3.1) to discover some of the individual exceptions to many of these
constraints and also to give examples of some of the various noun and verb classes.

=, -ation/N

[QFITYERE] An FSA for another fragment of English derivational morphology.

We can now use these FSAs to solve the problem of morphological recognition;
that is, of determining whether an input string of letters makes up a legitimate English
word. We do this by taking the morphotactic FSAs and plugging each “sub-lexicon™
into the FSA. That is, we expand each arc (e.g., the reg-noun-stem arc) with all the
morphemes that make up the set of reg-noun-stem. The resulting FSA can then be
defined at the level of the individual letter.

Figure 3.7 shows the noun-recognition FSA produced by expanding the nominal
inflection FSA of Fig. 3.3 with sample regular and irregular nouns for each class. We
can use Fig. 3.7 to recognize strings like aardvarks by simply starting at the initial state
and comparing the input letter by letter with each word on each outgoing arc, and so
on, just as we saw in Chapter 2.

RN Expanded FSA for a few English nouns with their inflection. Note that this au-
tomaton will incorrectly accept the input foxs. We see, beginning on page 62, how to correctly
deal with the inserted ¢ in foxes.

Section 3.4 Finite-State Transducers 57

3.4 Finite-State Transducers

F5T

We've now seen that FSAs can represent the morphotactic structure of a lexicon and can
be used for word recognition. In this section, we introduce the finite-state transducer,
The next section shows how transducers can be applied to morphological parsing.

A transducer maps between one representation and another: a finite-state trans-
ducer, or FST, is a type of finite automaton which maps between two sets of symbols.
We can visualize an FST as a two-tape automaton that recognizes or generates pairs of
strings. Intuitively, we can do this by labeling each arc in the finite-state machine with
two symbol strings, one from each tape. Figure 3.8 shows an example of an FST where
each arc is labeled by an input and output string, separated by a colon.

aab . b:e

[JTIIERE] A finite-state transducer.

The FST thus has a more general function than an FSA; where an FSA defines a
formal language by defining a set of strings, an FST defines a relation between sets of
strings. Another way of looking at an FST is as a machine that reads one string and
generates another. Here's a summary of this fourfold way of thinking about transduc-
ers:

o FST as recognizer: a transducer that takes a pair of strings as input and outputs;
accept if the string-pair is in the string-pair language, and refecr if it is not.

s FST as generator: a machine that outputs pairs of strings of the language. Thus,
the output is a yes or no, and a pair of output strings.

o FST as translator: a machine that reads a string and outputs another string.

» FST as set relater: a machine that computes relations between sets.

All of these have applications in speech and language processing. For morpholog-
ical parsing (and for many other NLP applications), we apply the FST as translator
metaphor, taking as input a string of letters and producing as output a string of mor-
phemes.

Let’s begin with a formal definition. An FST can be formally defined with seven
parameters:

58 Chapter 3.

Words and Transducers

Regular relation

Tnsersection

Tnversion

Compagition

FProjection

Q a finite set of N states qo,q1,...,g8—1

b a finite set corresponding to the input alphabet

A a finite set corresponding to the output alphabet

goEQ the start state

FCQ the set of final states

d(q,w) the transition function or transition matrix between states. Given a

state g € (and a string w € Z*, 8(g,w), returns a set of new states
Q' € (. & is thus a function from Q x Z* to 2¢ (because there are
22 possible subsets of Q). & returns a set of states rather than a

Lrl single state because a given input may be ambiguous as to which
state it maps to.

ol(g,w) the output function giving the set of possible output strings for each
state and input. Given a state ¢ € (and a string w € Z*, o(g,w)
gives a set of output strings, each a string 0 € A*. o is thus a func-
tion from Q x E* to 24",

Whereas FSAs are isomorphic to regular languages, FSTs are isomorphic to regu-
lar relations. Regular relations are sets of pairs of strings, a natural extension of the
regular languages, which are sets of strings. Like FSAs and regular languages, FSTs
and regular relations are closed under union, although in general they are not closed un-
der difference, complementation, and intersection (although some vseful subclasses of
FSTs are closed under these operations; in general, FSTs that are not augmented with
the € are more likely to have such closure properties). Besides union, FSTs have two
additional closure properties that turn out to be extremely useful:

Inversion: The inversion of a transducer T (T~') simply switches the
input and output labels. Thus, if 7 maps from the input alphabet / to
the output alphabet O, T~ maps from O to I.

Composition: If T} is a transducer from [) to Oy and T3 a transducer
from €@ to @2, then T} o T> maps from [} to 05,

Inversion is useful because it makes it easy to convert an FST-as-parser into an
FST-as-generator.)

Composition is useful because it allows us to replace two transducers that run in
series with one, more complex, transducer. Composition works as in algebra; apply-
ing 77 o T> to an input sequence § is identical to applying 77 to § and then T3 to the
result; thus, T o T2(8) = T2(T1(5)). Figure 3.9 shows, for example, the composition of
[a:b]+ with [b:c]+to produce [a:c]+.

The projection of an FST is the FSA that is produced by extracting only one side

Section 3.4. Finite-State Transducers 59

of the relation. We can refer to the projection to the left or upper side of the relation as
the upper or first projection and the projection to the lower or right side of the relation
<, asthe lower or second projection.

3.4.1 Sequential Transducers and Determinism

Transducers as we have described them may be nondeterministic, in that a given input
may translate to many possible output symbols. Thus, using general FSTs requires
the kinds of search algorithms discussed in Chapter 2, making FSTs quite slow in
the general case. This suggests that it would nice to have an algorithm to convert
a non-deterministic FST to a deterministic one. But while every non-deterministic
FSA is equivalent to some deterministic FSA, not all finite-state transducers can be
determinized.

Sequential transducers, by contrast, are a subtype of transducers that are deter-
ministic on their input. At any state of a sequential transducer, each given symbol of
the input alphabet Z can label at most one transition out of that state. Figure 3.10 gives
an example of a sequential transducer from Mohri (1997); note that here, unlike the
transducer in Fig. 3.8, the transitions out of each state are deterministic, based on the
state and the input symbol. Sequential transducers can have epsilon symbols in the
output string, but not on the input.

Sequential
transducers

Rl A sequential finite-state transducer, from Mohri (1997,

Sequential transducers are not necessarily sequential on their output. Mohri’s trans-
ducer in Fig. 3.10 is not, for example, since two distinct transitions leaving state 0 have
the same output (b). Since the inverse of a sequential transducer may thus not be se-
quential, we always need to specify the direction of the transduction when discussing
sequentiality. Formally, the definition of sequential transducers modifies the 6 and o
functions slightly; 8 becomes a function from Q x £* to Q (rather than to 29), and o
becomes a function from Q x * to.A* (rather than to 227).

Sbaequeniiol A generalization of sequential transducers, the subsequential transducer, gen-
erates an additional output string at the final states, concatenating it onto the output
produced so far (Schiitzenberger, 1977). What makes sequential and subsequential
transducers important is their efficiency; because they are deterministic on input, they
can be processed in time proportional to the number of symbols in the input (they are
linear in their input length) rather than proportional to some much larger number that
is a function of the number of states. Another advantage of subsequential transduc-
ers is that there exist efficient algorithms for their determinization (Mohri, 1997) and
minimization {Mohri, 2000), extending the algorithms for determinization and mini-
mization of finite-state automata that we saw in Chapter 2.

While both sequential and subsequential transducers are deterministic and efficient,
neither of them can handle ambiguity, since they transduce each input string to exactly

60 Chapter 3.

Words and Transducers

one possible output string. Since ambiguity is a crucial property of natural language,
it will be useful to have an extension of subsequential transducers that can deal with
ambiguity but still retain the efficiency and other useful properties of sequential trans-
ducers. One such generalization of subsequential transducers is the p-subsequential
transducer. A p-subsequential transducer allows for p(p > 1) final output strings to
be associated with each final state (Mohri, 1996). They can thus handle a finite amount
of ambiguity, which is useful for many NLP tasks. Figure 3.11 shows an example of a
2-subsequential FST.

[APTTTORAN] A 2-subsequential finite-state transducer, from Mohri (1997).

Mohri (1996, 1997) shows a number of tasks whose ambiguity can be limited in
this way, including the representation of dictionaries, the compilation of morphological
and phonological rules, and local syntactic constraints. For each of these kinds of
problems, he and others have shown that they are p-subsequentializable and thus can
be determinized and minimized. This class of transducers includes many, although not
necessarily all, morphological rules.

3.5 FSTs for Morphological Parsing

Surface level

Lexical tape

Let’s now turn to the task of morphological parsing. Given the input cats, for instance,
we'd like to output car +N +Pl, telling us that car is a plural noun. Given the Spanish
input bebo (“I drink™), we'd like beber +V + Pind + 1P +5g, telling us that bebo is the
present indicative first person singular form of the Spanish verb beber, “to drink™.

In the finite-state morphology paradigm that we use, we represent a word as a cor-
respondence between a lexical level, which represents a concatenation of morphemes
making up a word, and the surface level, which represents the concatenation of let-
ters making up the actual spelling of the word. Figure 3.12 shows these two levels for
{English) cats.

Lexical §|claft [+N[+PIl

Surface 3 ctaftisti 1

T OR A Schematic examples of the lexical and surface tapes; the actual transducers in-
volve intermediate tapes as well.

For finite-state morphology, it’s convenient to view an FST as having two tapes.
The upper or lexical tape is composed from characters from one alphabet £, The

R

Eo—a

Section 3.5, F5Ts for Morphological Parsing 61

Feasible pair

Defaulr pair

Muorpheme
boundary

Word boundary

lower or surface tape is composed of characters from another alphabet A. In the two-
level morphology of Koskenniemi (1983), each arc is allowed to have a single symbol
from each alphabet. We can then combine the two symbol alphabets £ and A to create
a new alphabet, Z', which makes the relationship to FSAs quite clear. Z' is a finite
alphabet of complex symbols. Each complex symbol is composed of an input-output
pair i ; o, that has one symbol i from the input alphabet X, and one symbol o from an
output alphabet A; thus, £’ C X x A. X and A may each also include the epsilon symbol
€. Thus, whereas an FSA accepts a language stated over a finite alphabet of single
symbaols, such as the alphabet of our sheep language:

X=1{h,a,!} (3.2)
an FST defined this way accepts a language stated over pairs of symbols, as in
T={ara, b:b 1 a: ae e} (3.3)

In two-level morphology, the pairs of symbols in £ are also called feasible pairs.
Thus, each feasible pair symbol a : & in the transducer alphabet £’ expresses how the
symbaol a from one tape is mapped to the symbol & on the other tape. For example,
@ : € means that an @ on the upper tape will comrespond to noething on the lower tape.
Just as for an FSA, we can write regular expressions in the complex alphabet Z'. Since
it"s most common for symbols to map to themselves, in two-level morphology we call
pairs like a : a default pairs and just refer to them by the single letter a.

We are now ready to build an FST morphological parser out of our earlier mor-
photactic FSAs and lexica by adding an extra “lexical” tape and the appropriate mor-
phological features. Figure 3.13 shows an augmentation of Fig. 3.3 with the nominal
morphological features (+Sg and +P1) that correspond to each morpheme. The sym-
bol indicates 2 morpheme boundary, and the symbol # indicates a word boundary.
The morphological features map to the empty string e or the boundary symbols since
no segment on the output tape corresponds to them.

YR AR] A schematic transducer for English nominal number inflection Tyym. The sym-
bols above each arc represent elements of the morphological parse in the lexical tape; the symbaols
below each arc represent the surface tape (or the intermediate tape, described later), using the
morpheme-boundary symbol ™ and word-boundary marker #. The labels on the arcs leaving gy
are schematic and must be expanded by individual words in the lexicon,

In order for us to use Fig. 3.13 as a morphological noun parser, it needs to be
expanded with all the individual regular and irregular noun stems, replacing the labels

62

Chapter 3.

Words and Transducers

reg-noun, etc. To do this, we need to update the lexicon for this transducer so that
irregular plurals like geese will parse into the correct stem goose +N +F1l. We do
this by allowing the lexicon to also have two levels. Since surface geese maps to lexical
goose, the new lexical entry will be “g:g o:e o:e s:s e:e”. Regular forms
are simpler; the two-level entry for fox will now be “£: £ oio x:x", but by relying
on the orthographic convention that £ stands for £: £ and so on, we can simply refer
to it as fox and the form for geese as “g o:e o:e s e”. Thus, the lexicon looks
only slightly more complex:

reg-noun irreg-pl-noun irreg-sg-noun
fox gocoese £00se

cat sheep sheep
aardvark moliuwesice mouse

[ATTERNE] A fleshed-out English nominal inflection FST T, expanded from Ty, by re-
placing the three arcs with individual word stems (only a few sample word stems are shown).

The resulting transducer, shown in Fig. 3.14, will map plural nouns into the stem
plus the morphological marker +P1, and singular nouns into the stem plus the mor-
phological marker +Sg. Thus, a surface cars will map to cat +N +P1. This can be
viewed in feasible-pair format as follows:

cic aza tit +N:e +Pl: s#

Since the output symbols include the morpheme- and word-boundary markers ~ and
#, the lower labels in Fig. 3.14 do not correspond exactly to the surface level. Hence,
we refer to tapes with these morpheme boundary markers in Fig. 3.15 as intermediate
tapes; the next section shows how the boundary marker is removed.

3.6 Transducers and Orthographic Rules

The method described in the previous section will successfully recognize words like
aardvarks and mice. But just concatenating the morphemes won’t work for cases in

Section 3.6, Transducers and Orthographic Rules 63

Spelling rule

Lexical 5 |f 0 x|+M+F'I1 I [E

intermediate { | flofx|[~|s|#] |?

RN A schematic view of the lexical and intermediate tapes.

which there is a spelling change; it would incorrectly reject an input like foxes and
accept an input like foxs. We need to deal with the fact that English often requires
spelling changes at morpheme boundaries by introducing spelling rules (or ortho-
graphic rules) This section introduces a number of notations for writing such rules
and shows how to implement the rules as transducers. In general, the ability to im-
plement rules as a transducer turns out to be useful throughout speech and language
processing. Here are some spelling rules:

Name Description of Rule Example

Consonant 1-letter consonant doubled before -ing/-ed beg/begging
doubling

E deletion silent e dropped before -ing and -ed make/making

E insertion e added afier -5,-z,-x.-ch, -sh before -5 watch/watches

Y replacement -y changes to -ie before -5, -i before -ed try/tries

K insertion verbs ending with vowel + -c add -k panic/panicked

We can think of these spelling changes as taking as input a simple concatenation of
morphemes (the “intermediate output™ of the lexical transducer in Fig. 3.14) and pro-
ducing as output a slightly modified (correctly spelled) concatenation of morphemes.
Figure 3.16 shows in schematic form the three levels we are talking about: lexical,
intermediate, and surface. So, for example, we could write an E-insertion rule that
performs the mapping from the intermediate to surface levels shown in Fig. 3.16.

Lexical

Intermediate % | flofx|{*|s|#] |}

Surface } | flo|xlels

An example of the lexical, intermediate, and surface tapes. Between each pair
of tapes is a two-level transducer; the lexical transducer of Fig. 3.14 between the lexical and
intermediate levels, and the E-insertion spelling rule between the intermediate and surface levels,
The E-insertion spelling rule inserts an ¢ on the surface tape when the intermediate tape has a
morpheme boundary ~ followed by the morpheme -s.

Such a rule might say something like “insert an e on the surface tape just when
the lexical tape has a morpheme ending in x (or z, etc.) and the next morpheme is -s".
Here's a formalization of the rule:

64 Chapter 3.

Words and Transducers

X
e—ef 5 ¥ s# {3.4)

Z

This is the rule notation of Chomsky and Halle (1968); a rule of the form a —
b/c__d means “rewrite a as b when it occurs between ¢ and 7. Since the symbol
€ means an empty transition, replacing it means inserting something. Recall that the
symbol ~ indicates a morpheme boundary. These boundaries are deleted by inclusion
of the symbol ":e in the default pairs for the transducer; thus, morpheme boundary
markers are deleted on the surface level by default. The # symbol is a special symbol
that marks a word boundary. Thus (3.4) means “insert an e after a morpheme-final x,
5, ot z, and before the morpheme s”. Figure 3.17 shows an automaton that corresponds
to this rule.

ather

#, other

The transducer for the E-insertion rule of (3.4), extended from a similar trans-
ducer in Antworth (1990). We additionally need to delete the # symbol from the surface string;
we can do this either by interpreting the symbol # as the pair #:¢ or by postprocessing the output
to remove word boundaries.

The idea in building a transducer for a particular rule is to express only the con-
straints necessary for that rule, allowing any other string of symbols to pass through
unchanged. This rule ensures that we can only see the e:¢ pair if we are in the proper
context. So state gp, which models having seén only default pairs unrelated to the rule,
is an accepting state, as is ¢, which models having seen a z, s, or x. ¢; models hav-
ing seen the morpheme boundary after the z, s, or x, and again is an accepting state.
State g3 models having just seen the E-insertion; it is not an accepting state, since the
insertion is allowed only if it is followed by the s morpheme and then the end-of-word
symbol #,

The other symbol is used in Fig. 3.17 to safely pass through any parts of words that
don’t play a role in the E-insertion rule; other means “any feasible pair that is not in
this transducer”. So, for example, when leaving state gg, we go to g, on the z, 5, or x
symbols, rather than following the other arc and staying in gp. The semantics of other
depends on what symbols are on other arcs; since # is mentioned on some arcs, it is
(by definition) not included in other and thus, for example, is explicitly mentioned on
the arc from g2 to gy.

Section 3.7. The Combination of an FST Lexicon and Rules 635

A transducer needs to correctly reject a string that applies the rule when it shouldn’t.
One possible bad string would have the correct environment for the E-insertion but
have no insertion. State g5 is used to ensure that the e is always inserted whenever
the environment is appropriate; the transducer reaches gs only when it has seen an s
after an appropriate morpheme boundary. If the machine is in state gs and the next
symbol is #, the machine rejects the string (because there is no legal transition on #
from gs). Figure 3.18% shows the transition table for the rule that makes the illegal
transitions explicit with the “—" symbol. The next section shows a trace of this E-
insertion transducer running on a sample input string.

State ', Input 818 xix 232 o €z # other

qo: 1 1 1 0 - 0 0

Q! 1 1 1 2 : 0 0

! 5 1 1 0 3 0./

. e g amasalt Rl
Q4 - - - 5 - 0 .

as 1 1 1 2 ” sfiing

The state-transition table for the E-insertion rule of Fig. 3.17, extended from a
similar transducer in Antworth (1990),

3.7 The Combination of an FST Lexicon and Rules

Cascade

We are now ready to combine our lexicon and rule transducers for parsing and gener-
ating. Figure 3.19 shows the architecture of a two-level morphology system, whether
used for parsing or generating. The lexicon transducer maps between the lexical level,
with its stems and morphological features and an intermediate level that represents a
simple concatenation of morphemes. Then a host of transducers, each representing a
single spelling rule constraint, all run in parallel to map between this intermediate level
and the surface level. (We could instead have chosen to run all the spelling rules in
series (as a long cascade) if we slightly changed each rule.)

The architecture in Fig. 3.19 is a two-level cascade of transducers. Cascading two
automata means running them in series with the output of the first feeding the input to
the second. Cascades can be of arbitrary depth, and each level might be built out of
many individual transducers. The cascade in Fig, 3.19 has two transducers in series:
the transducer mapping from the lexical to the intermediate levels and the collection of
parallel transducers mapping from the intermediate to the surface level. The cascade
can be tun top-down to generate a string, or bottom-up to parse it; Fig. 3.20 shows a
trace of the system accepting the mapping from fox +N +PL to foxes.

The power of finite-state transducers is that exactly the same cascade with the same
state sequences is used when the machine is generating the surface tape from the lexical
tape or when it is parsing the lexical tape from the surface tape. For example, for
generation, imagine leaving the Intermediate and Surface tapes blank. Now if we run
the lexicon transducer, given fox +M +PL, it will produce fox"s# on the Intermediate

66 Chapter 3. Words and Transducers
LEXICON-FST
<L L
§1 [tlolx|r]sl#]d
i [I
i
orthographic rules
FST, .es FST,
I I]
L
EF 1f10 X e|s} H
(AT E] Generating or parsing with FST lexicon and rules,
Lexical Yef fo | x fenjspl] 3
Tlex @ GD % 3 % é
. =
Infermediate ¥} f olxd?rls
Te-insert 0 0 + +
[]
Surface 1 ffu. x{els] | 13
AR Accepting foxes: The lexicon transducer Ty, from Fig. 3.14 cascaded with the
E-insertion transducer in Fig. 3.17.
tape via the same states that it accepted the Lexical and Intermediate tapes in our earlier
example. If we then allow all possible orthographic transducers to run in parallel, we
will produce the same surface tape.
Parsing can be slightly more complicated than generation because of the problem
Ambiguiy of ambiguity. For example, foxes can also be a verb (albeit a rare one, meaning “to
baffle or confuse™), and hence the lexical parse for foxes could be fox +V +35gas
well as fox +N +PL. How are we to know which one is the proper parse? In fact, for
ambiguous cases of this sort, the transducer is not capable of deciding. Disambiguat-
Disambiguating ing will require some external evidence such as the surrounding words. Thus, foxes

is likely to be a noun in the sequence [saw rwe foxes yesterday, but a verb in the se-
quence That trickster foxes me every time!. We discuss such disambiguation algorithms

Section 3.7. The Combination of an FST Lexicon and Rules 67

in Chapter 5 and Chapter 20. Barring such external evidence, the best our transducer
can do is just enumerate the possible choices so we can transduce fox”s# into both fox
+V +35G and fox +N +PL.

There is a kind of ambiguity that we do need to handle: local ambiguity that occurs
during the process of parsing. For example, imagine parsing the input verb assess.
After seeing ass, our E-insertion transducer may propose that the e that follows is
inserted by the spelling rule (e.g., as far as the transducer is concerned, we might have
been parsing the word asses). It is not until we don’t see the # after asses, but rather
run into another s, that we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algorithms need to incorporate some
sort of search algorithm. Exercise 3.7 asks the reader to modify the algorithm for non-
deterministic FSA recognition in Fig. 2.19 in Chapter 2 to do FST parsing.

Note that many possible spurious segmentations of the input, such as parsing assess
as "a"s"ses"s will be ruled out since no entry in the lexicon will match this string.

Running a cascade can be made more efficient by composing and intersecting the
transducers., We've already seen how to compose a cascade of transducers in series
into a single more complex transducer. The intersection of two transducers/relations F
and G (F A G) defines a relation R such that R(x,y) if and only if F(x,y) and Gix,y).
While transducers in general are not closed under intersection, as discussed on page 58,
transducers between strings of equal length (without €) are, and two-level rules can be
written this way by treating the ¢ symbol as an ordinary symbol in the rule system. The

Interseciion intersection algorithm takes the Cartesian product of the states, that is, for each state
g; in machine 1 and state g; in machine 2, we create a new state ¢;;. Then for any input
symbol a, if machine 1 would transition to state g, and machine 2 would transition to
state gy, we transition to state gpy. Figure 3.21 sketches how this intersection (A) and
composition (o) process might be carried out.

TR, T

LEXICON-FST F&@
TETEDE D

Sl k] R

U] Intersection and composition of transducers.

Since there are a number of rule—FST compilers, it is almost never necessary in
practice to write an F5T by hand. Kaplan and Kay (1994) give the mathematics that
define the mapping from rules to two-level relations, and Antworth (1990) gives details
of the algorithms for rule compilation. Mohri (1997) gives algorithms for transducer
minimization and determinization.

68 Chapter 3.

Words and Transducers

3.8 Lexicon-Free FSTs: The Porter Stemmer

Keyword

Stemming

Forser stemmer

While building a transducer from a lexicon plus rules is the standard algorithm for
morphological parsing, there are simpler algorithms that don’t require the large on-line
lexicon demanded by this algorithm. These are used especially in IR tasks like Web
search (Chapter 23), in which a query such as a Boolean combination of relevant key-
words or phrases, for example, (marsupial OR kangaroo OR koala) returns documents
that have these words in them. Since a document with the word marsupials might not
match the keyword marsupial, some IR systems first run a stemmer on the query and
document words. Morphological information in IR is thus only used to determine that
two words have the same stem; the suffixes are thrown away.

One of the most widely used stemming algorithms is the simple and efficient Porter
(1980} algorithm, which is based on a series of simple cascaded rewrite rules. Since
cascaded rewrite rules are just the sort of thing that could be easily implemented as an
FST, the Porter algorithm also can be viewed as a lexicon-free FST stemmer (this idea
is developed further in the exercises (Exercise 3.6). The algorithm contains a series of
rules like these:

ATIONAL — ATE (e.g., relational — relate)
ING — ¢ if stem contains vowel (e.g., motoring — motor)
SSES — 55 (e.g., grasses — grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.) can
be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Stemming tends to improve the performance of information retrieval, especially
with smaller documents (the larger the document, the higher the chance the keyword
will occur in the exact form used in the query). But lexicon-free stemmers like the
Porter algorithm, while simpler than full lexicon-based morphological parsers, commit
errors like the following (Krovetz, 1993):

Errors of Commission Errors of Omission

organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity

Modern stemmers tend to be more complicated because, for example, we don't
want to stem, say the word Hlustrator o illustrate, since the capitalized form Illustrator
tends to refer to the software package. We return to this issue in Chapter 23,

3.9 Word and Sentence Tokenization

We have focused so far in this chapter on a problem of segmentation: how words can be
segmented into morphemes. We turn now to a brief discussion of the related problem

Section 3.9, Word and Sentence Tokenization 69

Tokenization

Sentence
SCEMIETEaTion

of segmenting running text into words and sentences. This task is called tokenization.
Word tokenization may seem simple in a language like English that separates words
by a special ‘space’ character. As shown later, not every language does this (Chinese,
Japanese, and Thai, for example, do not). But a closer examination will make it clear
that whitespace is not sufficient by itself even for English. Consider the following
sentences from Wall Street Journal and New York Times articles, respectively:

Mr. Sherwood said reaction to Sea Containers' proposal
has been "very positive."” In New York Stock Exchange
composite trading yesterday, Sea Containers closed at
562.625, up 62.5 cents.

‘41 said, ‘what’re you? Crazy?' ‘' said Sadowsky. ‘‘I
can't afford to deo that.*’

Segmenting purely on whitespace would produce words like these:
cents. said, positive." Crazy?

We could address these errors by treating punctuation, in addition to whitespace, as
a word boundary. But punctuation often occurs word internally, in examples like m.p.h,,
Ph.D., AT&T, cap’n, 01/02/06, and google.com. Similarly, assuming that we want 62.5
to be a word, we’ll need to avoid segmenting every period, since that will segment
this number into 62 and 5. Number expressions introduce other complications as well;
while commas normally appear at word boundaries, commas are used inside numbers
in English, every three digits: 555,500.50. Languages differ on punctuation styles for
numbers; many continental European languages like Spanish, French, and German, by
contrast, use a comma to mark the decimal point, and spaces (or sometimes periods)
where English puts commas, for example, 555 500, 50.

A tokenizer can also be used to expand clitic contractions that are marked by apos-
trophes, for example, converting what're above to the two tokens what are, and we re to
we are. This requires ambiguity resolution, since apostrophes are also used as genitive
markers (as in the book's over or in Containers’ above) or as quotative markers (as in
‘what're you? Crazy?' above). Such contractions occur in other alphabetic languages,
including articles and pronouns in French (j'ai, ["homme). While these contractions
tend to be clitics, not all clitics are marked this way with contraction. In general, then,
segmenting and expanding clitics can be done as part of the process of morphological
parsing presented earlier in the chapter.

Depending on the application, tokenization algorithms may also tokenize multi-
word expressions like New York or rock "n’ roll, which requires a multiword expression
dictionary of some sort. This makes tokenization intimately tied up with the task of de-
tecting names, dates, and organizations, a process called named entity detection which
is discussed in Chapter 22.

In addition to word segmentation, sentence segmentation is a crucial first step in
text processing. Segmenting a text into sentences is generally based on punctuation.
This is because certain kinds of punctuation (periods, question marks, exclamation
points) tend to mark sentence boundaries. Question marks and exclamation points are

70 Chapter 3,

Words and Transducers

Maximum
maiching

relatively unambiguous markers of sentence boundaries. Periods, on the other hand, are
more ambiguous, The period character *.” is ambiguous between a sentence boundary
marker and a marker of abbreviations like Mr. or Inc. The previous sentence that you
just read showed an even more complex case of this ambiguity, in which the final period
of Inc. marked both an abbreviation and the sentence boundary marker. For this reason,
sentence tokenization and word tokenization tend to be addressed jointly.

In general, sentence tokemization methods work by building a binary classifier
(based on a sequence of rules or on machine learning) that decides if a period is part
of the word or is a sentence-boundary marker. In making this decision, it helps to
know if the period is attached to a commonly used abbreviation; thus, an abbreviation
dictionary is useful.

State-of-the-art methods for sentence tokenization are based on machine learning
and are introduced in later chapters. But a useful first step can still be taken through
a sequence of regular expressions. We introduce here the first part; a word tokeniza-
tion algorithm. Figure 3.22 gives a simple Perl word tokenization algorithm based on
Grefenstette (1999). The algorithm is quite minimal, designed mainly to clarify many
of the segmentation issues we discussed in previous paragraphs.

The algorithm consists of a sequence of regular expression substitution rules. The
first rule separates unambiguous punctuation like question marks and parentheses. The
next rule segments commas unless they are inside numbers. We then disambiguate
apostrophes and pull off word-final clitics. Finally, we deal with periods, using a (toy)
abbreviation dictionary and some heuristics for detecting other abbreviations.

The fact that a simple tokenizer can be build with such simple regular expression
patterns suggest that tokenizers like the one in Fig. 3.22 can be easily implemented in
F5Ts. This is indeed the case, and Karttunen et al. (1996) and Beesley and Karttunen
{2003) describe such FST-based tokenizers.

3.9.1 Segmentation in Chinese

We mentioned above that some languages, including Chinese, Japanese, and Thai, do
not use spaces to mark potential word-boundaries. Alternative segmentation methods
are used for these languages.

In Chinese, for example, words are composed of characters known as hanzi. Each
character generally represents a single morpheme and is pronounceable as a single
syllable, Words on average are about 2.4 characters long. A simple algorithm that does
remarkably well for segmenting Chinese, and often used as a baseline comparison for
more advanced methods, is a version of greedy search called maximum matching or
sometimes maxmatch. The algorithm requires a dictionary (wordlist) of the language.

The maximum matching algorithm starts by pointing at the beginning of a string. It
chooses the longest word in the dictionary that matches the input at the current position.
The pointer is then advanced past each character in that word, If no word matches, the
pointer is instead advanced one character (creating a one-character word). The algo-
rithm is then iteratively applied again starting from the new pointer position. To help
visualize this algorithm, Palmer (2000) gives an English analogy that approximates the
Chinese situation by removing the spaces from the English sentence the table down
there to produce thetabledownthere. The maximum match algorithm (given a long En-

Section 3.9. Word and Sentence Tokenization 71

#1 /usr/bin/parl

Sletternumber = “[A-Za-z0-9]":

Snotletter = "[“A-Za-z0-9]";

Salwayssep = "[\WFLOV" AN

Selitie = "('|:|=| 8| 'D| 'M|'LL|'RE|VE|W'T| 8| 'd]| 'm| "11]| "re| ve|n't)";

Sabbr{"Co."} = 1; Sabbr{"Dr."} = 1; Sabbr{"Jan."} = 1; Sabbr{"Feb."} = 1;
while ($line = <>}{ # read the next line from standard input

put whitespace around unambiguous separators
5line =~ s/$alwayssep’/ 5& Sfg;

put whiteaspace around commas that aren't inside numbers
$lime =" &/(["0-9]},/51 , fa;
$line =~ s/, (["0-9]}/ , 51/g;

distinguish singlequotes from apostrophes by

segmenting off single guotes not preceded by letter
$line =~ =/ "/$& Jg;

$line =~ s/(Snotletter)’/51 */g;

segment off unambiguous word-final clitics and punctuation
$line =" s/$clitie$/ 5&/q9;
$line =" s/fclitic($notletter)/ $1 $2/q;

now deal with periods. For each possible word
fpossiblewords=split({/\a+/,51line);
foreach Sword (dpossiblewords) {
if it ends in a period,
if ((Sword =" Ji{letternumberh./)
L& !l{3abbr{Sword}) # and isn't on the abbreviation list
and isn’t a sequence of letters and periods (U.5.)
and doesn't resemble an abbreviation (no vowels: Inc.)
&& | ([Fword ="
ST [A-Ea-z]\, ([A-Ea-2]%\.)+ | [A-Z] [bedfghi-nptwxz]+4.)5/)) {
then segment off the period
) Sword =" &/\.8/ \./;
expand clitics
Sword ="s/'wve/fhave/:
Sword ="s/'m/am/;
print Sword,” ";
}
print "Wn";

}

A sample English tokenization script, adapted from Grefenstette (1999) and
Palmer (2000). A real script would have a longer abbreviation dictionary.

glish dictionary) would first match the word theta in the input since that is the longest
sequence of letters that matches a dictionary word. Starting from the end of theta, the
longest matching dictionary word is bled, followed by own and then there, producing
the incorrect sequence theta bled own there,

The algorithm seems to work better in Chinese (with such short words) than in
languages like English with long words, as our failed example shows. Even in Chinese,
however, maxmatch has a number of weakness, particularly with unknown words
{(words not in the dictionary) or unknown genres (genres which differ a lot from the
assumptions made by the dictionary builder),

There is an annual competition (technically called a bakeoff) for Chinese segmen-
tation algorithms. The most successful modern algorithms for Chinese word segmen-
tation are based on machine learning from hand-segmented training sets, We returmn to
these algorithms after we introduce probabilistic methods in Chapter 5.

72 Chapter 3. Words and Transducers

3.10 Detection and Correction of Spelling Errors

ALGERNON; But my own sweet Cecily, [have never writien you any letters.
CECILY. You need hardly remind me of that, Ernest. I remember only roo well
that I was forced to write vour letters for vou. [wrote always three times a week,

and sometimes oftener.
ALGERNON: O, do ler me read them, Cecily?

CeCILY: Oh, I couldn't possibly. They would make you far too conceited. The

three vou wrote me afier I had broken off the engagement are so beautiful, and

5o badly spelled, that even now I can havdly read them without crying a lirtle.
Oscar Wilde, The Importance of Being Earnest

Like Oscar Wilde's fabulous Cecily, a lot of people were thinking about spelling dur-
ing the last turn of the century. Gilbert and Sullivan provide many examples. The
Gondoliers” Giuseppe, for example, worries that his private secretary is “shaky in his
spelling”, while lolanthe’s Phyllis can “spell every word that she uses”. Thorstein Ve-
blen’s explanation (in his 1899 classic The Theory of the Leisure Class) was that a
main purpose of the “archaic, cumbrous, and ineffective” English spelling system was
to be difficult enough to provide a test of membership in the leisure class. Whatever
the social role of spelling, we can certainly agree that many more of us are like Ce-
cily than like Phyllis. Estimates for the frequency of spelling errors in human-typed
text vary from 0.05% of the words in carefully edited newswire text to 38% in difficult

applications like telephone directory lookup (Kukich, 1992,

In this section we introduce the problem of detecting and correcting spelling errors.

Since the standard algorithm for spelling error correction is probabilistic, we continue

our spell-checking discussion later in Chapter 5 after we define the probabilistic noisy
channel model. The detection and correction of spelling errors is an integral part of
modern word processors and search engines. It is also important in correcting errors in

OCR optical character recognition ((CR), the automatic recognition of machine or hand-
printed characters, and in on-line handwriting recognition, the recognition of human

printed or cursive handwriting as the user is writing. Following Kukich (1992), we can

distinguish three increasingly broader problems:

1. Non-word error detection: detecting spelling errors that result in non-words

(like graffe for giraffe).

2. Isolated-word error correction: correcting spelling errors that result in non-
words, for example, correcting graffe to giraffe, but looking only at the word in

1solation.

3. Context-dependent error detection and correction: using the context to help

detect and correct spelling errors even if they accidentally result in an actual word

Real-word errors of English (real-word errors). This can happen from typographical errors (in-
sertion, deletion, transposition) that accidentally produce a real word (e.g., there

for three), or because the writer substituted the wrong spelling of a homophone

or near-homophone (e.g., dessert for desert, or piece for peace).

Section 3.11. Minimum Edit Distance 73

Detecting non-word errors is generally done by marking any word that is not found
in a dictionary. For example, the misspelling graffe above would not occur in a dictio-
nary. Some early research (Peterson, 1986) had suggested that such spelling dictionar-
ies would need to be kept small because large dictionaries contain very rare words that
resemble misspellings of other words. For example the rare words wont or veery are
also common misspelling of won’t and very. In practice, Damerau and Mays (1989)
found that while some misspellings were hidden by real words in a larger dictionary,
the larger dictionary proved more helpful than harmful by avoiding marking rare words
as errors. This is especially true with probabilistic spell-correction algorithms that can
use word frequency as a factor. Thus, modern spell-checking systems tend to be based
on large dictionaries.

The finite-state morphological parsers described throughout this chapter provide a
technology for implementing such large dictionaries. By giving a morphological parser
for a word, an FST parser is inherently a word recognizer. Indeed, an FST morpho-
logical parser can be turned into an even more efficient FSA word recognizer by using
the projection operation to extract the lower-side language graph. Such FST dictio-
naries also have the advantage of representing productive morphology like the English
-5 and -ed inflections. This is important for dealing with new legitimate combinations
of stems and inflection. For example, a new stem can be easily added to the dictionary,
and then all the inflected forms are easily recognized. This makes FST dictionaries
especially powerful for spell-checking in morphologically rich languages in which a
single stem can have tens or hundreds of possible surface forms.’

FST dictionaries can thus help with non-word error detection. But how about error
correction? Algorithms for isolated-word error correction operate by finding words
that are the likely source of the errorful form. For example, correcting the spelling
error graffe requires searching through all possible words like giraffe, graf, craft, grail,
etc., to pick the most likely source. To choose among these potential sources, we need a
distance metric between the source and the surface error. Intuitively, giraffe is a more
likely source than grail for graffe because giraffe is closer in spelling to graffe than
grail is to graffe. The most powerful way to capture this similarity intuition requires
the use of probability theory and is discussed in Chapter 5. The algorithm underlying
this solution, however, is the non-probabilistic minimum edit distance algorithm that
we introduce in the next section.

3.11 Minimum Edit Distance

String distance

Deciding which of two words is closer to some third word in spelling is a special case of
the general problem of string distance. The distance between two strings is a measure
of how alike two strings are to each other.

Many important algorithms for finding string distance rely on some version of the

3 Early spell-checkers, by contrast, allowed any word to have any suffix; thus, early versions of Unix
spell accepted bizarre prefixed words like misclam and antiundoggingly and suffixed words from rhe, like
thehood and theness.

74 Chapter 3. Words and Transducers

Minimum edit minimum edit distance algorithm, named by Wagner and Fischer (1974) but indepen-
dently discovered by many people (summarized later, in the Historical Notes section of
Chapter 6). The minimum edit distance between two strings is the minimum number
of editing operations (insertion, deletion, substitution) needed to transform one string
into another. For example, the gap between the words intention and execution is five
Altgnment operations, shown in Fig. 3.23 as an alignment between the two strings. Given two se-
quences, an alignment is a correspondence between substrings of the two sequences,
Thus, T aligns with the empty string, N with E, T with X, and so on. Beneath the aligned
strings is another representation; a series of symbols expressing an operation list for
converting the top string into the bottom string: d for deletion, s for substitution, i for
insertion.

INTE+*NTION

EEEEEREEN

*EXECUTION
dss is

QT eeR] Representing the minimum edit distance between two strings as an alignment.
The final row gives the operation list for converting the top string into the bottom string: d for
deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of these operations. The
Levenshiein distance between two sequences is the simplest weighting factor in which
each of the three operations has a cost of 1 (Levenshtein, 1966).% Thus, the Levenshtein
distance between intention and execution is 5. Levenshtein also proposed an alternative
version of his metric in which each insertion or deletion has a cost of 1 and substitutions
are not allowed (equivalent to allowing substitution, but giving each substitution a cost
of 2 since any substitution can be represented by one insertion and one deletion). Using
this version, the Levenshtein distance between intention and execution is 8.

The minimum edit distance is computed by dynamic programming. Dynamic
programming is the name for a class of algorithms, first introduced by Bellman (1957),
that apply a table-driven method to solve problems by combining solutions to sub-
problems. This class includes the most commonly used algorithms in speech and
language processing; besides minimum edit distance, these include the Viterbi and
forward algorithms (Chapter 6) and the CKY and Earley algorithm (Chapter 13).

The intuition of a dynamic programming problem is that a large problem can be
solved by properly combining the solutions to various sub-problems. For example,
consider the sequence or “path” of transformed words that comprise the minimum edit
distance between the strings intention and execution shown in Fig. 3.24.

Imagine some string (perhaps it is exention) that is in this optimal path (whatever it
is). The intuition of dynamic programming is that if exention is in the optimal operation
list, then the optimal sequence must also include the optimal path from infention to
exention. Why? If there were a shorter path from intention to exention, then we could

Dynamic
DrOEraTITng

5 We assume that the substitution of a letter for itself, for example, substitution ¢ for ¢, has zero cost,

Section 3.11. Minimum Edit Distance 75

e
rr-
e
o

[=
1]

n .
-— delete i

[
o o

<— substitute n by e

<— substitute t by x

|9 =2 9

o

<+— insert u
on .
<— substitute n by ¢

execution

& o o o O
(S

™ o @® =
e
[

"
1]
== = =

[Ty gR®E] Transformation list example of Kruskal (1983) from infention (o execution,

use it instead, resulting in a shorter overall path, and the optimal sequence wouldn’t be
optimal, thus leading to a contradiction.

Dynamic programming algorithms for sequence comparison work by creating a
distance matrix with one column for each symbol in the target sequence and one row
for each symbol in the source sequence (i.e., target along the bottom, source along the
side). For minimum edit distance, this matrix is the edit-distance matrix. Each cell
edit-distance|i,j] contains the distance between the first ¢ characters of the target and
the first j characters of the source. Each cell can be computed as a simple function of
the surrounding cells; thus, starting from the beginning of the matrix it is possible to
fill in every entry. The value in each cell is computed by taking the minimum of the
three possible paths through the matrix which arrive there:

distanceli — 1, j| + ins-cost(target;_,)
distance(i, j| = min { distance[i — 1, j — 1] + sub-cost(source ;_ ,target;_,)
distanceli, j— 1] + del-cost{source ;1))

The algorithm itself is summarized in Fig. 3.25 and Fig. 3.26 shows the results
of applying the algorithm to the distance between intention and execution, assuming
the version of Levenshtein distance in which the insertions and deletions each have a
cost of 1 (ins-cost(-) = del-cost(-) = 1), and substitutions have a cost of 2 (except that
substitution of identical letters has zero cost).

Knowing the minimum edit distance is useful for algorithms like finding potential
spelling error corrections. But the edit distance algorithm is important in another way;
with a small change, it can also provide the minimum cost alignment between two
strings. Aligning two strings is useful throughout speech and language processing. In
speech recognition, minimum edit distance alignment is used to compute word error
rate in speech recognition (Chapter 9). Alignment plays a role in machine translation,
in which sentences in a parallel corpus (a corpus with a text in two languages) need to
be matched to each other.

To extend the edit distance algorithm to produce an alignment, we can start by
visualizing an alignment as a path through the edit distance matrix. Figure 3.27 shows
this path with the boldfaced cell. Each boldfaced cell represents an alignment of a pair
of letters in the two strings. If two boldfaced cells occur in the same row, there will
be an insertion in going from the source to the target; two boldfaced cells in the same
column indicates a deletion.

76 Chapter 3.

Words and Transducers

Backirace

function MIN-EDIT-DISTANCE(target, source) returns min-distance

n+— LENGTH(target)
m «— LENGTH(source)
Create a distance matrix distancefn+1.m+1]
Initialize the zeroth row and column to be the distance from the empty string
distance[0,0] =
for each column { from 1 to n do
distance(i,0] — distance[i-1,0] + ins-cost{target[i])
for each row j from 1 to m do
distance [0, j]« distance[0j-1] + del-cost(zource[j])
for each column i from 1 to » do
for each row j from 1 to m do
distance[i, j]+— MIN{ distance[i—1,j] + ins-cost(target;_|),
distance[i—1,j—1] + sub-msr(sourCEj_] targeti_1),
distanceli,j—1] + del-cost(source j_))
return distance[n,m]

g The minimum edit distance algorithm, an example of the class of dynamic pro-
gramming algorithms. The various costs can either be fixed (e.g., Vx,ins-cost(x) = 1) or can
be specific to the letier (to model the fact that some letters are more likely to be inserted than
others). We assume that there is no cost for substituting a letter for itself (i.e., sub-cost({x,x) = 0).

n 9 8 9 10 11 12 11 10 9 8
P 8 7 8 9 10 11 10 9 8 9
i 7 6 7 8 9 10 9 g) 10
t 6 5 6 ¥ 8 9 8 9 10 11
n 5 4 5 6 7 g 9 10 11 10
e 4 3 4 5 6 7 8 9 10 9
t 3 4 5 6 7 8 7 8 9 [
n 2 3 4 5 6 7 8 7 8 7
i 1 2 3 4 5 6 7 6 7 8
i] 1 2 3 4 5 6 7 8 9

e x e c u t i o n

: X Computation of minimum edit distance between intention and execution with the
al gonthm of Fig. 3.25, using Levenshtein distance with cost of 1 for insertions or deletions, 2 for
substitutions. In italics are the initial values representing the distance from the empty string.

Figure 3.27 also shows the intuition of how to compute this alignment path. The
computation proceeds in two steps. In the first step, we augment the minimum edit dis-
tance algorithm to store backpointers in each cell. The backpointer from a cell points
to the previous cell (or cells) that we came from in entering the current cell. We've
shown a schematic of these backpointers in Fig. 3.27, after a similar diagram in Gus-
field (1997). Some cells have multiple backpointers because the minimum extension
could have come from multiple previous cells. In the second step, we perform a back-
trace. In a backtrace, we start from the last cell (at the final row and column), and

Section 3.12. Human Morphological Processing 77

follow the pointers back through the dynamic programming matrix. Each complete
path between the final cell and the initial cell is a minimum distance alignment. Exer-
cise 3.12 asks you to modify the minimum edit distance algorithm to store the pointers
and compute the backtrace to output an alignment.

18| =19 =1 10— 11|/ 12] (11| 110 19 ~8

17|18 /19 10— 11| (10| 19 /8] -9

16| /1T /=18 =l 91 10| |9)F «9]-10
15| -1 6] 2—1T| =8| =l0} ~9 10} 11

14|15 /16| /=l Tl 8L 91 10 L2 11 L1 10

s3] —4b 81 —6] 7| 18| 19l 10] 19
sl el S el 6| el T -l B 2T =B A9 18
Sl 314 eS| el 6] T 8 LTl 8] /7
S R R) PP § o I RS) P i) ~T7| —8B
1 2 3 4 5 6 7 8 9
e X e C u i i ol n

L. N - A I N =

[N ERRe) When entering a value in each cell, we mark which of the three neighboring cells

=

we came from with up to three arrows. Afier the table is full we compute an alignment (min-
imum edit path) by using a backtrace, starting at the 8 in the upper-right corner and following
the arrows. The sequence of dark grey cells represents one possible minimum cost alignment
between the two strings.

There are various publicly available packages to compute edit distance, including
Unix diff and the NIST sclite program (NIST, 2005). Minimum edit distance can
also be augmented in various ways. The Viterbi algorithm, for example, is an extension
of minimum edit distance that uses probabilistic definitions of the operations. Instead
of computing the “minimum edit distance” between two strings, Viterbi computes the
“maximum probability alignment” of one string with another, The Viterbi algorithm is
crucial in probabilistic tasks like speech recognition and part-of-speech tagging.

3.12 Human Morphological Processing

Full listing

Minimum
redundancy

In this section we briefly survey psycholinguistic studies on how multimorphemic
words are represented in the minds of speakers of English. Consider the word walk
and its inflected forms walks and walked. Are all three in the human lexicon? Or
merely walk along with -ed and -s7 How about the word happy and its derived forms
happily and happiness? We can imagine two ends of a spectrum of possible representa-
tions. The full listing hypothesis proposes that all words of a language are listed in the
mental lexicon without any internal morphological structure. In this view, morphologi-
cal structure is an epiphenomenon, and walk, walks, walked, happy, and happily are all
separately listed in the lexicon. This hypothesis is untenable for morphologically com-
plex languages like Turkish. The minimum redundancy hypothesis suggests that only
the constituent morphemes are represented in the lexicon and when processing walks,
(whether for reading, listening, or talking) we must always access both morphemes

78 Chapter 3.

Words and Transducers

Priming

Marphological
Jamily size

(walk and -5) and combine them. This view is probably too strict as well.

Some of the earliest evidence that the human lexicon represents at least some mor-
phological structure comes from speech errors, also called slips of the tongue. In
conversational speech, speakers often mix up the order of the words or sounds:

if you break it it’ll drop

In slips of the tongue collected by Fromkin and Ratner (1998) and Garrett (1973),
inflectional and derivational affixes can appear separately from their stems. The ability
of these affixes to be produced separately from their stem suggests that the mental
lexicon contains some representation of morphological structure,

it’s not only us who have screw looses (for “screws loose™)
words of rule formation (for “rules of word formation™)
easy enoughly (for “easily enough™)

More recent experimental evidence suggests that neither the full listing nor the
minimum redundancy hypotheses may be completely true. Instead, it’s possible that
some but not all morphological relationships are mentally represented. Stanners et al.
(1979, for example, found that some derived forms (happiness, happily) seem to be
stored separately from their stem (happy) but that regularly inflected forms (pouring)
are not distinct in the lexicon from their stems (powr). Stanners et al. did this by
using a repetition priming experiment. In short, repetition priming takes advantage of
the fact that a word is recognized faster if it has been seen before (if it is primed).
They found that lifting primed [ifr, and burned primed burn, but, for example, selective
didn't prime selecr. Marslen-Wilson et al. (1994) found that spoken derived words
can prime their stems, but only if the meaning of the derived form is closely related
to the stem. For example, government primes govern, but department does not prime
depart. A Marslen-Wilson et al. (1994) model compatible with their findings is shown
in Fig. 3.28.

-ure -8

-al
-ing

ST ERE] Marslen-Wilson et al. (1994) result: Derived words are linked to their stems only
if semantically related.

In summuary, these results suggest that (at least) productive morphology like inflec-
tion does play an online role in the human lexicon. More recent studies have shown
effects of non-inflectional morphological structure on word reading time as well, such
as the morphological family size. The morphological family size of a word is the
number of other multimorphemic words and compounds in which it appears; the fam-
ily for fear, for example, includes fearful, fearfully, fearfulness, fearless, fearlessly,

SJearlessness, fearsome, and godfearing (according to the CELEX database), for a total

size of 9. Baayen and others (Baayen et al., 1997; De Jong et al., 2002; Moscoso del
Prado Martin et al., 2004a) have shown that words with a larger morphological family
size are recognized faster. Recent work has further shown that word recognition speed

Section 3.13. Summary 79

is affected by the total amount of information (or entropy) contained by the morpho-
logical paradigm (Moscoso del Prado Martin et al., 2004a); entropy will be introduced
in the next chapter.

3.13 Summary

This chapter introduced morphology, the arena of language processing dealing with
the subparts of words, and the finite-state transducer, the computational device that is
important for morphology but that also plays a role in many other tasks in later chapters.
We also introduced stemming, word and sentence tokenization, and spelling error
detection. Here's a summary of the main points we covered about these ideas:

* Morphological parsing is the process of finding the constituent morphemes in
aword (e.g., cat +N +PL for cats).

o English mainly uses prefixes and suffixes to express inflectional and deriva-
tional morphology.

o English inflectional morphology is relatively simple and includes person and
number agreement (-5) and tense markings (-ed and -ing). English derivational
morphology is more complex and includes suffixes like -ation and -ness and pre-
fixes like co- and re-. Many constraints on the English morphotactics (allowable
morpheme sequences) can be represented by finite automata.

¢ Finite-state transducers are an extension of finite-state automata that can gener-
ate output symbols. Important FST operations include composition, projection,
and intersection.

¢ Finite-state morphology and two-level morphology are applications of finite-
state transducers to morphological representation and parsing.

¢ Automatic transducer compilers can produce a transducer for any rewrite rule,
The lexicon and spelling rules can be combined by composing and intersecting
transducers.

e The Porter algorithm is a simple and efficient way to do stemming, stripping
off affixes. It is not as accurate as a lexicon-based transducer model but is rele-
vant for tasks like information retrieval in which exact morphological structure
is not needed.

+ Word tokenization can be done by simple regular expressions substitutions or
by transducers.

e Spelling error detection is normally done by finding words that are not in a
dictionary; an FST dictionary can be useful for this.

s The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed by dynamic programming, which also results in an alignment of the
two Strings.

80 Chapter 3.

Words and Transducers

Bibliographical and Historical Notes

Despite the close mathematical similarity of finite-state transducers to finite-state au-
tomata, the two models grew out of somewhat different traditions. Chapter 2 described
how the finite automaton grew out of Turing’s (1936) model of algorithmic computa-
tion, and McCulloch and Pitts finite-state-like models of the neuron. The influence of
the Turing machine on the transducer was somewhat more indirect. Huffman (1954)
proposed what was essentially a state-transition table to model the behavior of sequen-
tial circuits, based on the work of Shannon (193%) on an algebraic model of relay cir-
cuits. Based on Turing and Shannon’s work, and unaware of Huffman's work, Moore
(1956) introduced the term finite automaton for a machine with a finite number of
states with an alphabet of input symbols and an alphabet of output symbols. Mealy
(1955) extended and synthesized the work of Moore and Huffman.

The finite automata in Moore's original paper and the extension by Mealy differed
in an important way. In a Mealy machine, the input/output symbols are associated
with the transitions between states. In a Moore machine, the input/output symbols
are associated with the state. The two types of transducers are equivalent; any Moore
machine can be converted into an equivalent Mealy machine, and vice versa. Further
early work on finite-state transducers, sequential transducers, and so on, was conducted
by Salomaa (1973) and by Schiltzenberger (1977).

Early algorithms for morphological parsing used either the bottom-up or top-down
methods that we discuss when we turn to parsing in Chapter 13. An early bottom-
up affix-stripping approach was Packard’s (1973) parser for ancient Greek that itera-
tively stripped prefixes and suffixes off the input word, making note of them, and then
looked up the remainder in a lexicon. It returned any root that was compatible with
the stripped-off affixes. AMPLE (A Morphological Parser for Linguistic Exploration)
(Weber and Mann, 1981; Weber et al., 1988, Hankamer and Black, 1991) is another
early bottom-up morphological parser. Hankamer’s (1986) keCi is an early top-down
generate-and-test or analysis-by-synthesis morphological parser for Turkish, guided by
a finite-state representation of Turkish morphemes. The program begins with a mor-
pheme that might match the left edge of the word, applies every possible phonological
rule to it, and checks each result against the input. If one of the outputs succeeds, the
program then follows the finite-state morphotactics to the next morpheme and tries to
continue matching the input.

The idea of modeling spelling rules as finite-state transducers is really based on
Johnson's (1972) early idea that phonological rules (discussed in Chapter 7) have finite-
state properties. Johnson's insight unfortunately did not attract the attention of the
community and was independently discovered by Ronald Kaplan and Martin Kay, first
in an unpublished talk (Kaplan and Kay, 1981} and then finally in print (Kaplan and
Kay, 1994) (see page 13 for a discussion of multiple independent discoveries). Kaplan
and Kay’s work was followed up and most fully worked out by Koskenniemi (1983),
who described finite-state morphological rules for Finnish. Karttunen (1983) built a
program called KIMMO based on Koskenniemi’s models. Antworth (1990) gives many
details of two-level morphology and its application to English.

Besides Koskenniemi’s work on Finnish and that of Antworth (1990) on English,

Exercises 81

Exercises

two-level or other finite-state models of morphology have been worked out for many
languages, such as Turkish (Oflazer, 1993) and Arabic (Beesley, 1996). Barton, Jr.
et al. (1987) bring up some computational complexity problems with two-level models,
which are responded to by Koskenniemi and Church (1988).

Readers with further interest in finite-state morphology should turn to Beesley and
Karttunen (2003). Readers with further interest in computational models of Arabic and
Semitic morphology should see Smrz (1998), Kiraz (2001), and Habash et al. (2005).

A number of practical implementations of sentence segmentation were available by
the 1990s. Summaries of sentence segmentation history and various algorithms can be
found in Palmer (2000), Grefenstette ({ 1999), and Mikheev (2003}. Word segmentation
has been studied especially in Japanese and Chinese. While the max-match algorithm
we describe is commonly used as a baseline or when a simple but reasonably accurate
algorithm is required, more recent algorithms rely on stochastic and machine learning
algorithms; see, for example, such algorithms as Sproat et al. (1996), Xue and Shen
(2003), and Tseng et al. (2005a).

Gusfield (1997) is an excellent book covering everything you could want to Know
about string distance, minimum edit distance, and related areas.

Students interested in automata theory should see Hoperoft and Ullman (1979) or
Lewis and Papadimitriou (1988). Roche and Schabes (1997b) is the definitive mathe-
matical introduction to finite-state transducers for language applications, and together
with Mohri (1997) and Mohri (2000), give many useful algorithms such as those for
transducer minimization and determinization.

The CELEX dictionary is an extremely useful database for morphological analysis,
containing full morphological parses of a large lexicon of English, German, and Dutch
(Baayen et al., 1995). Roark and Sproat (2007) is a general introduction to computa-
tional issues in morphology and syntax. Sproat (1993) is an older general introduction
to computational morphology.

3.1 Give examples of each of the noun and verb classes in Fig. 3.6, and find some
exceptions to the rules.

3.2 Extend the transducer in Fig. 3.17 to deal with sh and ch.
3.3 Write a transducer(s) for the K insertion spelling rule in English.
3.4 Write a transducer(s) for the consonant doubling spelling rule in English.

3.5 The Soundex algorithm (Knuth, 1973; Odell and Russell, 1922) is a method
commonly used in libraries and older census records for representing people's
names. It has the advantage that versions of the names that are slightly misspelled
or otherwise modified (common, e.g., in hand-written census records) will still
have the same representation as correctly spelled names. (e.g., Jurafsky, Jarofsky,
Jarovsky, and Jarovski all map to J612).

82 Chapter 3,

Words and Transducers

3.6

37

3.8

39

310

.11

312

1. Keep the first letter of the name, and drop all occurrences of non-initial a,
e, h,i,o,u, wy

2. Replace the remaining letters with the following numbers:
b.f,p,v—1
g jkg.sxz—2
d,t—3
1 —4
m,n — 3
r—6

3. Replace any sequences of identical numbers, only if they derive from two or
more letters that were adjacent in the original name, with a single number
(e.g., 666 — 6).

4. Convert to the form Letter Digit Digit Digit by dropping digits
past the third (if necessary) or padding with trailing zeros (if necessary).

The exercise: write an FST to implement the Soundex algorithm.

Read Porter (1980 or see Martin Porter’s official homepage on the Porter stem-
mer. Implement one of the steps of the Porter Stemmer as a transducer.

Write the algorithm for parsing a finite-state transducer, using the pseudocode
introduced in Chapter 2. You should do this by modifying the algorithm ND-
RECOGNIZE in Fig. 2.19 in Chapter 2.

Write a program that takes a word and, using an on-line dictionary, computes
possible anagrams of the word, each of which is a legal word.

In Fig. 3.17, why is there a z, 5, x arc from g5 to ;7

Computing minimum edit distances by hand, figure out whether drive is closer
to brief or to divers and what the edit distance is. You may use any version of
distance that you like.

Now implement a minimum edit distance algorithm and use your hand-computed
results to check your code.

Augment the minimum edit distance algorithm to output an alignment; you will
need to store pointers and add a stage to compute the backirace.

